Rigorous Numerics for Partial Differential Equations: The Kuramoto-Sivashinsky Equation

نویسندگان

  • Piotr Zgliczynski
  • Konstantin Mischaikow
چکیده

We present a new topological method for the study of the dynamics of dissipative PDE’s. The method is based on the concept of the selfconsistent apriori bounds, which allows to justify rigorously the Galerkin projection. As a result we obtain a low-dimensional system of ODE’s subject to rigorously controlled small perturbation from the neglected modes. To this ODE’s we apply the Conley index to obtain information about the dynamics of the PDE under consideration. We applied the method to the Kuramoto-Sivashinsky equation ut = (u 2)x − uxx − νuxxxx, u(x, t) = u(x+ 2π, t), u(x, t) = −u(−x, t) We obtained a computer assisted proof the existence of the large number fixed points for various values of ν > 0. AMS Subject classification numbers: 37B30, 37L65, 65M60, 35Q35 Research supported in part by Polish KBN grants 2P03A 021 15, 2 P03A 011 18 and NSF–NATO grant DGE–98–04459. Research supported in part by NSF grant DMS-9805584.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rigorous Numerics for Dissipative Partial Differential Equations II. Periodic Orbit for the Kuramoto-Sivashinsky PDE-A Computer-Assisted Proof

We present a method of self-consistent a-priori bounds, which allows to study rigorously dynamics of dissipative PDEs. As an application present a computer assisted proof of an existence of a periodic orbit for the Kuramoto-Sivashinsky equation ut = (u )x− uxx− νuxxxx, u(t, x) = u(t, x + 2π), u(t, x) = −u(t,−x),

متن کامل

Kuramoto - Sivashinsky weak turbulence , in the symmetry unrestricted space

Kuramoto-Sivashinsky equation was introduced by Kuramoto [1976] in one-spatial dimension, for the study of phase turbulance in the BelousovZhabotinsky reaction. Sivashinsky derived it independently in the context of small thermal diffusive instabilities for laminar flame fronts. It and related equations have also been used to model directional solidification and , in multiple spatial dimensions...

متن کامل

Application of Daubechies wavelets for solving Kuramoto-Sivashinsky‎ type equations

We show how Daubechies wavelets are used to solve Kuramoto-Sivashinsky type equations with periodic boundary condition‎. ‎Wavelet bases are used for numerical solution of the Kuramoto-Sivashinsky type equations by Galerkin method‎. ‎The numerical results in comparison with the exact solution prove the efficiency and accuracy of our method‎.    

متن کامل

Fixed points of a destabilized Kuramoto-Sivashinsky equation

We consider the family of destabilized Kuramoto-Sivashinsky equations in one spatial dimension ut + νuxxxx + βuxx + γuux = αu for α,ν ≥ 0 and β ,γ ∈ R. For certain parameter values, shock-like stationary solutions have been numerically observed. In this work we verify the existence of several such solutions using the framework of self-consistent bounds and validated numerics.

متن کامل

Feedback control of surface roughness in sputtering processes using the stochastic Kuramoto-Sivashinsky equation

This work focuses on control of surface roughness in sputtering processes including two surface micro-processes, diffusion and erosion. The fluctuation of surface height of such sputtering processes can be described by the stochastic Kuramoto–Sivashinsky equation (KSE), a fourth-order stochastic partial differential equation (PDE). Specifically, we consider sputtering processes, including surfa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Foundations of Computational Mathematics

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2001